會議論文

學年 112
學期 2
發表日期 2024-05-22
作品名稱 Real-Time Anomaly Detection in Grinding Wheels Using a Multimodal Deep Learning Framework
作品名稱(其他語言)
著者 Qiaoyun Zhang; Wan-Chi Yang; Hsiang-Chuan Chang; Chia-Ling Ho; Chih-Yung Chang
作品所屬單位
出版者
會議名稱 I-DO 2024
會議地點 Taipei; Taiwan
摘要 In the manufacturing process involving grinding wheels, challenges arise in fine-tuninggrindingmachines, typicallyaddressedbycraftsmen through subjective observations of sparks and sounds. This paper introduces a novel mechanism comprising two pivotal phases aimed at optimizing grinding wheel production line efficiency and accuracy. Firstly, an AutoEncoder is employed for spectrogram denoising, effectively isolating grinding sounds from environmental noise. Convolutional Neural Networks (CNNs) in the Encoder extract features across time and frequency domains, while deconvolution in the Decoder gradually restores features. ReLU activation ensures computational efficiency and effectively handles nonlinear features. Secondly, an AI-based assessment determines parameter adjustments using a combination of 3DCNN and CNN. By integrating classification results from both networks, features from video and audio data are identified, thereby enhancing classification effectiveness. Anomalies during grinding operations are detected through combined outputs, indicating the need for parameter adjustments
關鍵字 Deep learning; 3DCNN; CNN; Anomaly Detection
語言 zh_TW
收錄於
會議性質 國內
校內研討會地點
研討會時間 20240522~20240524
通訊作者
國別 TWN
公開徵稿
出版型式
出處
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/126362 )