期刊論文

學年 108
學期 2
出版(發表)日期 2020-05-07
作品名稱 SIDR: A Swarm Intelligence-Based Damage-Resilient Mechanism for UAV Swarm Networks
作品名稱(其他語言)
著者 Ming Chen; Huibin Wang; Chih-Yung Chang; Xianglin Wei
單位
出版者
著錄名稱、卷期、頁數 IEEE Access 8, p.77089-77105
摘要 Unmanned Aerial Vehicle (UAV) swarm networks have been presented as a promising paradigm for conducting monitoring, and inter-connecting tasks in unattended or even hostile environments. However, harsh deployment scenario may make the UAVs susceptible to large-scale damage, and thus degrades the connectivity and performance of the network. None of existing technologies can effectively re-organize the surviving UAVs in a severely damaged UAV swarm into a unified UAV Swarm Network (USNET), this paper presents and analyzes the damage-resilience problem of USNETs for the first time, and put forwards a Swarm Intelligence-based Damage-Resilient (SIDR) mechanism. First, a damage model of USNETs and several metrics are defined before the problem is formally formulated. Second, the SIDR mechanism is detailed based on comprehensively utilizing the storage, communication, positioning, and maneuvering capabilities of UAVs. Third, a potential-field-based solution to the proposed SIDR mechanism is presented, aiming to recover a USNET rapidly and elastically. At last, an evaluation environment is built on the OMNeT++ platform, and the proposed SIDR mechanism is implemented. Extensive simulations are conducted in both dynamic and static scenarios. Simulation results demonstrate that SIDR outperforms the existing algorithms in terms of resilience capability, convergence time and communication overhead. Even if a USNET is divided into multiple disjoint subnets with arbitrary shape, SIDR can aggregate the surviving nodes into a connected network while the network is still flying along the flight path during the recovery process.
關鍵字
語言 en_US
ISSN 2169-3536
期刊性質 國外
收錄於 SCI
產學合作
通訊作者 Huibin Wang
審稿制度
國別 USA
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118865 )