會議論文
學年 | 102 |
---|---|
學期 | 1 |
發表日期 | 2013-08-04 |
作品名稱 | Data Association and Map Management for Robot SLAM using Local Invariant Features |
作品名稱(其他語言) | |
著者 | Wang, Yin-Tien; Feng, Ying-Chieh |
作品所屬單位 | 淡江大學機械與機電工程學系 |
出版者 | New York : IEEE Computer Society, Institute of Electrical and Electronics Engineers |
會議名稱 | 2013 IEEE International Conference on Mechatronics and Automation (ICMA) |
會議地點 | Takamatsu, Japan |
摘要 | To build a persistent map with visual landmarks is one of the most important steps for implementing the visual simultaneous localization and mapping (SLAM). The corner detector is a common method utilized to detect visual landmarks for constructing a map of the environment. However, due to the scalevariant characteristic of corner detection, extensive computational cost is needed to recover the scale and orientation of corner features in SLAM tasks. The purpose of this paper is to build the map using a local invariant feature detector, namely speeded-up robust features (SURF), to detect scale- and orientation-invariant features as well as provide a robust representation of visual landmarks for SLAM. The procedures of detection, description and matching of regular SURF algorithms are modified in this paper in order to provide a robust data-association of visual landmarks in SLAM. Furthermore, the effective method of map management for SURF features in SLAM is also designed to improve the accuracy of robot state estimation. |
關鍵字 | Robot Mapping;Local Invariant Feature Detectors;Speeded-Up Robust Features (SURF);Simultaneous Localization and Mapping (SLAM) |
語言 | en |
收錄於 | |
會議性質 | 國際 |
校內研討會地點 | |
研討會時間 | 20130804~20130807 |
通訊作者 | 王銀添 |
國別 | JPN |
公開徵稿 | Y |
出版型式 | 電子版 |
出處 | Proceedings of 2013 IEEE International Conference on Mechatronics and Automation (ICMA), pp.1102-1107 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92586 ) |