期刊論文

學年 101
學期 1
出版(發表)日期 2012-11-21
作品名稱 Data preprocessing for artificial neural network applications in prioritizing railroad projects – a practical experience in Taiwan
作品名稱(其他語言)
著者 Min-Yuan,Cheng Cheng-Wei,Su Ming-Hsiu,Tsai Kuo-Shian,Lin
單位 台灣科技大學 淡江大學
出版者 Taylor & Francis
著錄名稱、卷期、頁數 Journal of Civil Engineering and Management 18(4), pp.483-494
摘要 Financial constraints necessitate the tradeoff among proposed railroad projects, so that the project priorities for implementation and budget allocation need to be determined by the ranking mechanisms in the government. At present, the Taiwan central government prioritizes funding allocations primarily using the analytic hierarchy process (AHP), a methodology that permits the synthesizing of subjective judgments systematically and logically into objective consensus. However, due to the coopetition and heterogeneity of railway projects, the proper priorities of railroad projects could not be always evaluated by the AHP. The decision makers prefer subjective judgments to referring to the AHP evaluation re- sults. This circumstance not only decreased the AHP advantages, but also raised the risk of the policies. A method to con- sider both objective measures and subjective judgments of project attributes can help reduce this problem. Accordingly, combining the AHP with the artificial neural network (ANN) methodologies would theoretically be a proper solution to bring a ranking predication model by creating the obscure relations between objective measures by the AHP and subjec- tive judgments. However, the inconsistency between the AHP evaluation and subjective judgments resulted in the inferior soundness of the AHP/ANN ranking forecast model. To overcome this problem, this study proposes the data prepro- cessing method (DPM) to calculate the correlation coefficient value using the subjective and objective ranking incidence matrixes; according to the correlation coefficient value, the consistency between the AHP rankings and subjective judg- ments of railroad projects can be evaluated and improved, so that the forecast accuracy of the AHP/ANN ranking forecast model can also be enhanced. Based on this concept, a practical railroad project ranking experience derived from the Insti- tute of Transportation of Taiwan is illustrated in this paper to reveal the feasibility of applying the DPM to the AHP/ANN ranking prediction model.
關鍵字
語言 en_US
ISSN 1392-3730
期刊性質 國外
收錄於 SCI
產學合作
通訊作者 Ming-Hsiu,Tsai (mht@mail.tku.edu.tw
審稿制度
國別 GBR
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/82975 )

機構典藏連結