Max-coloring of vertex-weighted graphs | |
---|---|
學年 | 104 |
學期 | 1 |
出版(發表)日期 | 2016-01-01 |
作品名稱 | Max-coloring of vertex-weighted graphs |
作品名稱(其他語言) | |
著者 | Hsiang-Chun Hsu; Gerard Jennhwa Chang |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Graphs and Combinatorics 32(1), p.191-198 |
摘要 | A proper vertex coloring of a graph G is a partition \{A_1,A_2,\ldots ,A_k\} of the vertex set V(G) into stable sets. For a graph G with a positive vertex-weight c:V(G) \rightarrow (0,\infty ), denoted by (G,c), let \chi (G,c) be the minimum value of \sum _{i=1}^k \max _{v \in A_i} c(v) over all proper vertex coloring \{A_1,A_2,\ldots ,A_k\} of G and \sharp \chi (G,c) the minimum value of k for a proper vertex coloring \{A_1,A_2,\ldots ,A_k\} of G such that \sum _{i=1}^k \max _{v \in A_i} c(v) = \chi (G,c). This paper establishes an upper bound on \sharp \chi (G,c) for a weighted r-colorable graph (G,c), and a Nordhaus–Gaddum type inequality for \chi (G,c). It also studies the c-perfection for a weighted graph (G,c). |
關鍵字 | Coloring;Weighted graph;Perfection |
語言 | en_US |
ISSN | 0911-0119 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | 是 |
國別 | TWN |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115406 ) |
SDGS | 優質教育 |