Parity and strong parity edge-colorings of graphs
學年 101
學期 1
出版(發表)日期 2012-11-30
作品名稱 Parity and strong parity edge-colorings of graphs
作品名稱(其他語言)
著者 Hsiang-Chun Hsu; Gerard Jennhwa Chang
單位
出版者
著錄名稱、卷期、頁數 Journal of Combinatorial Optimization 24(4), p.427-436
摘要 A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic number p(G) (respectively, strong parity edge-chromatic number pˆ(G) ) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that pˆ(G)≥p(G)≥χ′(G)≥Δ(G) for any graph G. In this paper, we determine pˆ(G) and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine pˆ(Km,n) and p(K m,n ) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉).
關鍵字 (Strong) parity edge-coloring;(Strong) parity edge-chromatic number;Hypercube embedding;Hopt-Stiefel function;Product of graphs
語言 en_US
ISSN 1382-6905
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 TWN
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115409 )

SDGS 優質教育