Tuning the Electronic and Magnetic Properties of Nitrogen-Functionalized Few-Layered Graphene Nanoflakes | |
---|---|
學年 | 105 |
學期 | 2 |
出版(發表)日期 | 2017-06-07 |
作品名稱 | Tuning the Electronic and Magnetic Properties of Nitrogen-Functionalized Few-Layered Graphene Nanoflakes |
作品名稱(其他語言) | |
著者 | Soin, N.; Ray, S.C.; Sarma, S.; Mazumder, D.; Sharma, S.; Wang, Y.-F.; Pong, W.-F.; Roy, S.S.; Strydom, A.M. |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Journal of Physical Chemistry C 121(26), p.14073-14082 |
摘要 | In this article, we report the modification of the electronic and magnetic properties of few-layered graphene (FLG) nanoflakes by nitrogen functionalization carried out using radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD) and electron cyclotron resonance (ECR) plasma processes. Even though the rf-PECVD N2 treatment led to higher N-doping levels in the FLG (4.06 atomic %) as compared to the ECR process (2.18 atomic %), the ferromagnetic behavior of the ECR FLG (118.62 × 10–4 emu/g) was significantly higher than that of the rf-PECVD FLG (0.39 × 10–4 emu/g) and pristine graphene (3.47 × 10–4 emu/g). Although both plasma processes introduce electron-donating N atoms into the graphene structure, distinct dominant nitrogen bonding configurations (pyridinic, pyrrolic) were observed for the two FLG types. Whereas the ECR plasma introduced more sp2-type nitrogen moieties, the rf-PECVD process led to the formation of sp3-coordinated nitrogen functionalities, as confirmed through Raman measurements. The samples were further characterized using X-ray absorption near-edge spectroscopy (XANES), and X-ray and ultraviolet photoelectron spectroscopies revealed an increased electronic density of states and a significantly higher concentration of pyrrolic groups in the rf-PECVD samples. Because of the formation of reactive edge structures and pyridinic nitrogen moieties, the ECR-functionalized FLG samples exhibited highest saturation magnetization behavior with the lowest field hysteretic features. In comparison, the rf-PECVD samples displayed the lowest saturation magnetization owing to the disappearance of magnetic edge states and formation of stable nonradical-type defects in the pyrrole type structures. Our experimental results thus provide new evidence regarding the control of the magnetic and electronic properties of few-layered graphene nanoflakes through control of the plasma-processing route. |
關鍵字 | |
語言 | en_US |
ISSN | |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | 否 |
國別 | USA |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115549 ) |