Efficient Importance Sampling for Rare Event Simulation with Applications
學年 100
學期 1
發表日期 2011-12-20
作品名稱 Efficient Importance Sampling for Rare Event Simulation with Applications
作品名稱(其他語言)
著者 Fuh, Cheng-der; Teng, Huei-Wen; Wang, Ren-Her
作品所屬單位 淡江大學財務金融學系
出版者
會議名稱 International Workshop on Statistical Computing in Quantitative Finance and Biostatistics: A Satellite Meeting for the 7th IASC-ARS Conference
會議地點 Taichung, Taiwan
摘要 Importance sampling has been known as a powerful tool to reduce the variance of Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing the variance of Monte Carlo estimator, we propose a simple general account for finding the optimal tilting measure. To this end, we first obtain an explicit expression of the optimal alternative distribution, and then propose a recursive approximation algorithm for the tilting measure. The proposed algorithm is quite general to cover many interesting examples and can also be applied to a locally asymptotically normal (LAN) family around the original distribution. To illustrate the broad applicability of our method, we study value-at-risk (VaR) computation in financial risk management, and bootstrap confidence regions in statistical inferences.
關鍵字 Bootstrap;Confidence region;Exponential tilting;Local asymptotic normal;Moderate deviation;Value at Risk
語言 en
收錄於
會議性質 國內
校內研討會地點
研討會時間 20111220~20111221
通訊作者
國別 TWN
公開徵稿 Y
出版型式
出處 International Workshop on Statistical Computing in Quantitative Finance and Biostatistics: A Satellite Meeting for the 7th IASC-ARS Conference
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88839 )

機構典藏連結