Group Sequential Analysis of Incomplete Longitudinal Ordinal Data
學年 98
學期 1
出版(發表)日期 2009-12-01
作品名稱 Group Sequential Analysis of Incomplete Longitudinal Ordinal Data
作品名稱(其他語言)
著者 Chen, Yi-Ju; Lin, Kuo-Chin; Lin, Jian-Jhih
單位 淡江大學統計學系
出版者 Kumamoto: ICIC International
著錄名稱、卷期、頁數 ICIC Express Letters 3(4)pt.B, pp.1453-1458
摘要 Group sequential methods have been used for a correct application of interim analysis, which is conducted to allow for possibly early termination of a alinical trial for ethical, economical and administrative considerations. The classical group sequential methods are applied for cross-sectional data and the boundaries can be easily computed due to the property of independent increment structure (IIS) between the successive test statistices. owever, it does not hold for longitudinal data. For analyzing longitudinal ordinal data, group sequential methods based on generalized linear mixed models (GLMM) and generalized estimating equations (GEE) models are proposed. The performance ofthese two approaches are compared with respect to their type I error rate and power bysimulation studies. The proposed methods are demonstrated by a real data set with ordinal responses.
關鍵字 GEE model;GLMM;Group sequential method;Longitudinal ordinal data;Power;Type I rate
語言 en
ISSN 1881-803X
期刊性質 國外
收錄於 EI
產學合作
通訊作者 Chen, Yi-Ju; Lin, Kuo-Chin
審稿制度
國別 JPN
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69197 )

機構典藏連結

SDGS 良好健康和福祉,優質教育