A nonparametric smoothing method for assessing GEE models with longitudinal binary data | |
---|---|
學年 | 97 |
學期 | 1 |
出版(發表)日期 | 2008-09-01 |
作品名稱 | A nonparametric smoothing method for assessing GEE models with longitudinal binary data |
作品名稱(其他語言) | |
著者 | Lin, Kuo-Chin; 陳怡如; Chen, Yi-ju; Shyr, Yu |
單位 | 淡江大學統計學系 |
出版者 | West Sussex: John Wiley & Sons Ltd. |
著錄名稱、卷期、頁數 | Statistics in Medicine 27(22), pp.4428-4439 |
摘要 | Studies involving longitudinal binary responses are widely applied in the health and biomedical sciences research and frequently analyzed by generalized estimating equations (GEE) method. This article proposes an alternative goodness-of-fit test based on the nonparametric smoothing approach for assessing the adequacy of GEE fitted models, which can be regarded as an extension of the goodness-of-fit test of le Cessie and van Houwelingen (Biometrics 1991; 47:1267-1282). The expectation and approximate variance of the proposed test statistic are derived. The asymptotic distribution of the proposed test statistic in terms of a scaled chi-squared distribution and the power performance of the proposed test are discussed by simulation studies. The testing procedure is demonstrated by two real data. |
關鍵字 | GEE model; goodness-of-fit test; logistic regression model; longitudinal binary data; nonparametric smoothing |
語言 | en |
ISSN | 0277-6715 |
期刊性質 | |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | |
國別 | GBR |
公開徵稿 | |
出版型式 | |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50444 ) |
SDGS | 良好健康和福祉,優質教育 |