Correlation-Based Functional Clustering via Subspace Projection
學年 97
學期 1
出版(發表)日期 2008-12-01
作品名稱 Correlation-Based Functional Clustering via Subspace Projection
作品名稱(其他語言)
著者 Chiou, Jeng-min; Li, Pai-ling
單位 淡江大學統計學系
出版者 Alexandria: American Statistical Association
著錄名稱、卷期、頁數 Journal of the American Statistical Association 103(484), pp.1684-1692
摘要 A correlation-based functional clustering method is proposed for grouping curves with similar shapes. A correlation between two random functions defined through the functional inner product is used as a similarity measure. Curves with similar shapes are embedded in the cluster subspace spanned by a mean shape function and eigenfunctions of the covariance kernel. The cluster membership prediction for each curve attempts to maximize the functional correlation between the observed and predicted curves via shape standardization and subspace projection among all possible clusters. The proposed method accounts for shape differentials through the functional multiplicative random-effects shape function model for each cluster, which regards random scales and intercept shifts as a nuisance. A consistent estimate is proposed for the random scale effect, whose sample variance estimate is also consistent. The derived identifiability conditions for the clustering procedure unravel the predictability of cluster memberships. Simulation studies and a real data example illustrate the proposed method.
關鍵字 Functional correlation; Functional data; Functional principal component analysis; Projection; Random scale effects; Shape similarity
語言 en
ISSN 0162-1459 1537-274X
期刊性質 國外
收錄於 SCI
產學合作
通訊作者 Chiou, Jeng-min
審稿制度
國別 USA
公開徵稿
出版型式 紙本 電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50439 )

機構典藏連結

SDGS 氣候行動,優質教育