期刊論文

學年 113
學期 1
出版(發表)日期 2024-10-13
作品名稱 A Novel Electromagnetic Sensing Generative Adversarial Network for Uniaxial Objects
作品名稱(其他語言)
著者 Chien-Ching Chiu; Po-Hsiang Chen; Hao Jiang; Bo-Yu Shi
單位
出版者
著錄名稱、卷期、頁數 Electronics (13)20, 4027
摘要 Electromagnetic imaging achieves enhanced resolution by leveraging the advanced sensing and data analysis capabilities of Internet of Things (IoT) systems. This paper introduces a novel learning approach for generative adversarial networks (GANs) to tackle significant challenges in electromagnetic sensing. The proposed method involves deploying additional transmitters and receivers to irradiate TM (transverse magnetic) and TE (transverse electric) polarization waves around uniaxial objects to capture the scattered field in free space. Subsequently, scattered field generative adversarial networks (SF-GANs) are utilized to simulate and learn the characteristics of Maxwell’s equations. Numerical simulations and experimental results demonstrate the superior performance of the SF-GANs compared to backpropagation generative adversarial networks (BP-GANs). Furthermore, it is worth noting that our method is capable of reconstructing high-dielectric-constant objects.
關鍵字 scattered field learning; generative adversarial networks; uniaxial objects; electromagnetic sensing; electromagnetic imaging
語言 en_US
ISSN 2079-9292
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 CHE
公開徵稿
出版型式 ,電子版,紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/127509 )