期刊論文

學年 113
學期 1
出版(發表)日期 2024-11-27
作品名稱 Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping
作品名稱(其他語言)
著者 Tuen, Lung-fai; Li, Ching-lieh; Chi, Yu-jen; Chiu, Chien-ching; Chen, Po-hsiang
單位
出版者
著錄名稱、卷期、頁數 IET Microwaves, Antennas & Propagation 18(12), p.1113-1138
摘要 This paper presents a systematic antenna design methodology that integrates machine learning, leveraging the progressive growth technique of Progressive Growing of GANs (PGGAN) to generate images of various dual-band PIFA-like antenna structures. The process involves using data augmentation methods to generate 4180 antenna samples. In the latent space, the authors employ Latin Hypercube Sampling to maintain diversity and combine it with the Hough Transform to enhance the edge features of the antennas while providing labelling functionality. This labelling method strengthens the relationship between antenna frequency and wavelength characteristics. The paper clearly outlines the design process, starting from the simulation of two types of single-frequency PIFA-like antennas (2.45 and 5.2 GHz, respectively) to the completion of PGGAN's generation task, resulting in a novel dual-band Wi-Fi PIFA-like antenna structure. The measurement results of the dual-band antennas exhibit excellent consistency with the simulation results.
關鍵字 dual-band antenna;hough transform;Latin hypercube sampling;PGGAN;WGAN-GP
語言 en_US
ISSN 1751-8733
期刊性質 國外
收錄於 SCI EI
產學合作
通訊作者
審稿制度
國別 USA
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/126941 )