期刊論文
學年 | 110 |
---|---|
學期 | 2 |
出版(發表)日期 | 2022-02-03 |
作品名稱 | Asymptotic quasinormal frequencies of different spin fields in d-dimensional spherically-symmetric black holes |
作品名稱(其他語言) | |
著者 | Chun-Hung Chen; Hing-Tong Cho; Anna Chrysostomou; Alan S. Cornell |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Classical and Quantum Gravity 39, 055001 |
摘要 | While Hod's conjecture is demonstrably restrictive, the link he observed between black hole (BH) area quantisation and the large overtone (n) limit of quasinormal frequencies (QNFs) motivated intense scrutiny of the regime, from which an improved understanding of asymptotic quasinormal frequencies (aQNFs) emerged. A further outcome was the development of the 'monodromy technique', which exploits an anti-Stokes line analysis to extract physical solutions from the complex plane. Here, we use the monodromy technique to validate extant aQNF expressions for perturbations of integer spin, and provide new results for the aQNFs of half-integer spins within higher-dimensional Schwarzschild, Reissner–Nordström, and Schwarzschild (anti-)de Sitter BH spacetimes. Bar the Schwarzschild anti-de Sitter case, the spin-1/2 aQNFs are purely imaginary; the spin-3/2 aQNFs resemble spin-1/2 aQNFs in Schwarzschild and Schwarzschild de Sitter BHs, but match the gravitational perturbations for most others. Particularly for Schwarzschild, extremal Reissner–Nordström, and several Schwarzschild de Sitter cases, the application of n → ∞ generally fixes $\mathbb{R}e\left\{\omega \right\}$ and allows for the unbounded growth of $\mathbb{I}m\left\{\omega \right\}$ in fixed quantities. |
關鍵字 | higher-dimensional black holes; physics of black holes; asymptotic quasinormal modes |
語言 | en |
ISSN | 1361-6382; 0264-9381 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | 否 |
國別 | GBR |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/123346 ) |