研究報告
學年 | 106 |
---|---|
學期 | 1 |
出版(發表)日期 | 2017-10-28 |
作品名稱 | 運用資訊融合與模型融合發展穩定高效能之電子商務詐騙偵測架構 |
作品名稱(其他語言) | Developing Stable and High-Performance E-Commerce Fraud Detection Framework Based on Information Fusion and Model Fusion |
著者 | 張昭憲 |
單位 | |
描述 | |
委託單位 | 科技部 |
摘要 | 電子商務的蓬勃發展有目共睹,但也引起有心人士的注意,在各種交易平台中進行詐騙。由於網路的隱蔽性與便利性,讓這些不法行為在短期內便快速成長,若不加以抑制,將嚴重影響其未來發展。電子商務的詐騙偵測雖已獲得高度關注,亦有許多方法被提出,但仍面臨諸多挑戰。為此,本計畫運用資訊融合與模型融合概念,發展有效的預測方法,以提供更穩定、準確的偵測結果。有關資訊融合,本研究提出了一套動態資料融合方法,先將訓練集依照類別分成多個群聚,再根據待測帳號的特性,選擇適合的群聚資料進行塑模,以提升模型的偵測效果。對於模型融合,本研究則以線性迴歸組合多種不同模型,以提供更穩定的預測結果。考量蒐集資料對於預測值的影響延遲效果,除一般模型外,我們亦將各種延遲模型納入融合過程。為驗證提出方法之有效性,我們針對上述方法分別進行實驗。結果顯示,在不同資料分割方式設定下,使用動態資料融合方法確有機會能提供更佳的偵測結果。當透過模型融合進行數值預測時,在僅考慮訓練集的狀況下,其預測關聯度可達0.910。當實際進行預測時,其關聯度仍亦達0.844,與單一模型相較,確可提供了良好的預測穩定性。 |
關鍵字 | 模型融合;資訊融合;詐騙偵測;電子商務;巨量資料分析 |
語言 | zh_TW |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118567 ) |