期刊論文
學年 | 101 |
---|---|
學期 | 1 |
出版(發表)日期 | 2012-11-30 |
作品名稱 | Parity and strong parity edge-colorings of graphs |
作品名稱(其他語言) | |
著者 | Hsiang-Chun Hsu; Gerard Jennhwa Chang |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Journal of Combinatorial Optimization 24(4), p.427-436 |
摘要 | A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic number p(G) (respectively, strong parity edge-chromatic number pˆ(G) ) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that pˆ(G)≥p(G)≥χ′(G)≥Δ(G) for any graph G. In this paper, we determine pˆ(G) and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine pˆ(Km,n) and p(K m,n ) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉). |
關鍵字 | (Strong) parity edge-coloring;(Strong) parity edge-chromatic number;Hypercube embedding;Hopt-Stiefel function;Product of graphs |
語言 | en_US |
ISSN | 1382-6905 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | 是 |
國別 | TWN |
公開徵稿 | |
出版型式 | ,電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115409 ) |