期刊論文
學年 | 103 |
---|---|
學期 | 2 |
出版(發表)日期 | 2015-06-16 |
作品名稱 | Vibrations in an elastic beam with nonlinear supports at both ends |
作品名稱(其他語言) | |
著者 | Yi-Ren Wang; Zhi-Wei Fang |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Journal of Applied Mechanics and Technical Physics 56(2), pp.337-346 |
摘要 | This study analyzed vibrations in an elastic beam supported by nonlinear supports at both ends under the influence of harmonic forces. We hypothesized that the elastic Bernoullis-Euler beam was supported by cubic springs to simulate nonlinear boundary conditions. We described the dynamic behavior of the beam using Fourier expansion and simulated mode shapes using the Bessel function. We then applied the Hankel transform to obtain particular (non-homogeneous) solutions. This study succeeded in describing the jump phenomenon of nonlinear frequency response, from which we derived the resonance frequency and the frequency region(s) of system instability. Models based on linear boundary conditions are unable to capture this phenomenon. A larger modulus of elasticity in nonlinear supports increases the frequency of unstable vibration in the 1st mode and also widens the frequency region of system instability. This influence is less prominent in the 2nd mode, in which the largest amplitude was smaller than those observed in the 1st mode. The model and the analytical approach presented in this study are widely applicable to construction problems, such as shock absorber systems in motorcycles, suspension bridges, high speed railways, and a variety of mechanical devices. According to our results, system stability is influenced by the frequency regions of system instability as well as the nonlinear modulus of elastic supports. |
關鍵字 | vibration;nonlinear boundary conditions;elastic beam |
語言 | en |
ISSN | 1573-8620 |
期刊性質 | 國外 |
收錄於 | SCI EI |
產學合作 | |
通訊作者 | Yi-Ren Wang |
審稿制度 | 否 |
國別 | RUS |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/104508 ) |