會議論文
學年 | 102 |
---|---|
學期 | 1 |
發表日期 | 2013-12-16 |
作品名稱 | Abnormal Event Detection Using HOSF |
作品名稱(其他語言) | |
著者 | Yen, Shwu-Huey; Wang, Chun-Hui |
作品所屬單位 | 淡江大學資訊工程學系 |
出版者 | |
會議名稱 | The International Conference on IT Convergence and Security (ICITCS 2013) |
會議地點 | Macau |
摘要 | In this paper a simple and effective crowd behavior normality method is proposed. We use the histogram of oriented social force (HOSF) as the feature vector to encode the observed events of a surveillance video. A dictionary of codewords is trained to include typical HOSFs. To detect whether an event is normal is accomplished by comparing how similar to the closest codeword via z-value. The proposed method includes the following characteristic: (1) the training is automatic without human labeling; (2) instead of object tracking, the method integrates particles and social force as feature descriptors; (3) z-score is used in measuring the normality of events. The method is testified by the UMN dataset with promising results. |
關鍵字 | normality;crowd;social force (SF);histogram of oriented social force (HOSF);z-value |
語言 | en |
收錄於 | |
會議性質 | 國際 |
校內研討會地點 | |
研討會時間 | 20131216~20131218 |
通訊作者 | |
國別 | MAC |
公開徵稿 | Y |
出版型式 | 電子版 |
出處 | Proceedings of the International Conference on IT Convergence and Security (ICITCS 2013), 4p. |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/97001 ) |