期刊論文
學年 | 93 |
---|---|
學期 | 2 |
出版(發表)日期 | 2005-02-01 |
作品名稱 | Simulation and Optimization for Power Plant Flue Gas CO2 Absorption-Stripping Systems |
作品名稱(其他語言) | |
著者 | Chang, H.; Shih, C. M. |
單位 | 淡江大學化學工程與材料工程學系 |
出版者 | Philadelphia: Taylor & Francis Inc. |
著錄名稱、卷期、頁數 | Separation Science and Technology 40(4), pp.877-909 |
摘要 | Performance characteristics and design optimization for industrial-scale coal-fired and natural-gas-fired power plant flue gas CO2 absorption-stripping systems, using MEA (monoethanolamine) and mixed-DGA/MDEA (diglycolamine/methyldiethanolamine) aqueous solutions, are investigated by computer simulation. A rigorous model adopted from the literature, built on RATEFRAC of Aspen Plus, is used to simulate the complex reactive absorption behaviors. Column profiles and mass transfer characteristics as well as the effects of design variables for conventional, conventional with absorber intercooler and split-flow schemes are analyzed. Major design variables for each scheme are identified. Both intercooler and split-flow schemes are beneficial. The split-flow scheme is examined from three aspects for its applicability. Design optimizations by the logical search plan method are performed for both coal-fired and natural-gas-fired CO2 recovery systems using MEA aqueous solution. Compared to practical initial designs, the optimized designs provide cost reductions of 10% and 26% for intercooler and split-flow schemes, respectively. |
關鍵字 | Power plant;carbon dioxide;absorption;stripping;intercooler;split‐flow;design optimization;logical search plan;alkanolamine |
語言 | en |
ISSN | 0149-6395 |
期刊性質 | 國外 |
收錄於 | SCI EI |
產學合作 | |
通訊作者 | |
審稿制度 | |
國別 | USA |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/19242 ) |