會議論文

學年 97
學期 1
發表日期 2008-12-06
作品名稱 端點非線性支撐之彈性樑振動研究
作品名稱(其他語言) A Study of Beam Vibration with Nonlinear Boundaries
著者 王怡仁; 方志緯
作品所屬單位 淡江大學航空太空工程學系
出版者 臺北市:中華民國航空太空學會
會議名稱 中華民國航空太空學會第五十屆年會暨學術研討會國科會航太學門成果發表會
會議地點 臺北市, 臺灣
摘要 本文將研究彈性樑在兩端點為非線性支撐的條件下,承受簡諧外力時的頻率響應分析。其中,彈性樑假設為Bemoullis-Euler beam '兩端以三次方彈簧的支撐以模擬非線性邊界條件,再利用傅立葉展開式(Fourier expansion)描述樑的運動行為。如此,以建立吾人之偽非線性振動模型。在運動方程建立完成後,利用貝索函數(Bessel function) 來模擬解析函數的形式,其次再以漢克轉換(Hankel transform) 來求其特解。觀察研究結果可發現,在非線性頻率響應分析當中會有跳躍現象Uump phenomenon)產生,其現象不只在單一頻率時發生,而是在一頻率域之中發生。由此現象可得知物體振動時的共振頻率及不穩定頻率域,而線性邊界條件假設則無法捕捉比現象。因為線性邊界條件狀況下只能觀察到物體的共振頻率。此一模型及本文所提之新的分析方式可運用在廣泛的工程問題當中,如吊橋、高速鐵路以及各種機械裝置。根據研究結果,在探討振動問題時,除了要關心共振頻率外,在非線性運動狀況下,不穩定頻率域的觀察也是極其重要的。 In this research, the beam vibration with nonlinear boundary conditions sustaining simple harmonic loads is studied. The elastic beam is modeled by the Bemoullis-Euler beam theory. The two ends are supported by cubic springs allowing nonlinear boundaries. The Fourier expansion is applied to the linear motion of the beam alone. However, cubic spring forces give the nonlinear constrains on the boundaries. This quasi-nonlinear analytic model for the beam vibration equation is established. The Bessel function is used to formulate the beam vibration. The Hankel transform is applied to obtain the solution. The results discover the nonlinear jump phenomenon in several frequency ranges. This gives additional information of the unstable behavior for the beam vibration, which cannot be predicted from linear approximations. This model and the new analytic technique can be applied in a wide range of engineering problems, such as suspension bridge, high speed rail road, and other mechanical devices.
關鍵字 振動;端點非線性支撐;彈性樑;Vibration;Nonlinear boundaries;Elastic beam
語言 zh_TW
收錄於
會議性質 國內
校內研討會地點 淡水校園
研討會時間 20081206~20081206
通訊作者
國別 TWN
公開徵稿 Y
出版型式 紙本
出處 中華民國航空太空學會第五十屆年會暨學術研討會國科會航太學門成果發表會會議首冊暨論文摘要集,頁111
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/62594 )

機構典藏連結