期刊論文

學年 100
學期 2
出版(發表)日期 2012-04-01
作品名稱 Traveling wave front for a two-component lattice dynamical system arising in competition models
作品名稱(其他語言)
著者 Guo, Jong-Shenq; Wu, Chang-Hong
單位 淡江大學數學學系
出版者 Maryland Heights: Academic Press
著錄名稱、卷期、頁數 Journal of Differential Equations 252(8), pp.4357-4391
摘要 We study traveling front solutions for a two-component system on a one-dimensional lattice. This system arises in the study of the competition between two species with diffusion (or migration), if we divide the habitat into discrete regions or niches. We consider the case when the nonlinear source terms are of Lotka–Volterra type and of monostable case. We first show that there is a positive constant (the minimal wave speed) such that a traveling front exists if and only if its speed is above this minimal wave speed. Then we show that any wave profile is strictly monotone. Moreover, under some conditions, we show that the wave profile is unique (up to translations) for a given wave speed. Finally, we characterize the minimal wave speed by the parameters in the system.
關鍵字 Traveling front; Lattice dynamical system; Competition model; Monostable; Minimal wave speed; Wave profile
語言 en
ISSN 0022-0396
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 USA
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/76895 )

機構典藏連結