期刊論文

學年 97
學期 2
出版(發表)日期 2009-03-01
作品名稱 GEE Modeling with Longitudinal Binary Data: Goodness-of-Fit Assessment via Local Polynomial Smoothing
作品名稱(其他語言)
著者 Lin, K. C.; Chen, Y. J.
單位 淡江大學統計學系
出版者
著錄名稱、卷期、頁數 International Journal of Intelligent Technology ; Applied Statistics 2, pp.77-88
摘要 Analysis of longitudinal binary data is often accomplished by using GEE methodology to estimate the marginal model parameters. Most of current goodness-of-fit tests for GEE models have been studied in parametric situations. In this article, we consider to develop an alternative assessment for GEE models utilizing nonparametric technique. The proposed test avoided the explosion of a large number of additional parameters and dependence on partition of covariate space. Even though exact expectation and variance of the proposed test statistic are analytically and computationally infeasible, approximated values based on bootstrap data are employed. The asymptotic distribution of the proposed test statistic in terms of a scaled chi-squared distribution, and comparison of the proposed test and the current methods with respect to power are discussed by simulation studies. In addition, the testing procedure is illustrated by a medical study from Koch et al. [12].
關鍵字 Bootstrap;GEE model;Goodness-of-fit;Logistic regression;Longitudinal binary data;Nonparametric smoothing
語言 en
ISSN
期刊性質 國內
收錄於
產學合作
通訊作者
審稿制度
國別 TWN
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69195 )

機構典藏連結