會議論文

學年 83
學期 1
發表日期 1994-10-01
作品名稱 RBF-network-based sliding mode control
作品名稱(其他語言)
著者 Lin, Sinn-cheng; Chen, Yung-yaw
作品所屬單位 淡江大學資訊與圖書館學系
出版者
會議名稱
會議地點
摘要 A sliding mode controller (SMC) design method based on radial basis function network (RBFN) is proposed in this paper. Similar to the multilayer perceptron, the RBFN also known to be a good universal approximator. In this work, the weights of the RBFN are changed according to some adaptive algorithms for the purpose of controlling the system state to hit a user-defined sliding surface and then slide along it. The initial weights of the RBFN can be set to small random numbers, and then online tuned automatically, no supervised learning procedures are needed. By applying the RBFN-based sliding mode controller to control a nonlinear unstable inverted pendulum system, the simulation results show the expected approximation sliding property was occurred, and the dynamic behavior of the control system can be determined by the sliding surface
關鍵字
語言 en
收錄於
會議性質
校內研討會地點
研討會時間
通訊作者
國別
公開徵稿
出版型式
出處 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX , USA
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/53603 )

機構典藏連結